Hyper-parameter tuning of classification and regression trees for software effort estimation

 

Đã lưu trong:
Chi tiết về thư mục
Nhiều tác giả: Villalobos Arias, Leonardo, Quesada López, Christian Ulises, Martínez Porras, Alexandra, Jenkins Coronas, Marcelo
Định dạng: comunicación de congreso
Ngày xuất bản:2021
Miêu tả:Classification and regression trees (CART) have been reported to be competitive machine learning algorithms for software effort estimation. In this work, we analyze the impact of hyper-parameter tuning on the accuracy and stability of CART using the grid search, random search, and DODGE approaches. We compared the results of CART with support vector regression (SVR) and ridge regression (RR) models. Results show that tuning improves the performance of CART models up to a maximum of 0.153 standardized accuracy and reduce its stability radio to a minimum of 0.819. Also, CART proved to be as competitive as SVR and outperformed RR.
Quốc gia:Kérwá
Tổ chức giáo dục:Universidad de Costa Rica
Repositorio:Kérwá
Ngôn ngữ:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/102209
Truy cập trực tuyến:https://hdl.handle.net/10669/102209
https://doi.org/10.1007/978-3-030-72660-7_56
Từ khóa:software effort estimation
hyper-parameter tuning