Sparse bounds for Bochner–Riesz multiplers
Uloženo v:
| Autoři: | , , |
|---|---|
| Médium: | artículo original |
| Datum vydání: | 2019 |
| Popis: | The Bochner–Riesz multipliers are shown to satisfy a range of sparse bounds. The range of sparse bounds increases to the optimal range, as δ increases to the critical value, even assuming only partial information on the Bochner–Riesz conjecture in dimensions n≥3. In dimension n=2, we prove a sharp range of sparse bounds. The method of proof is based upon a ‘single scale’ analysis, and yields the sharpest known weighted estimates for the Bochner–Riesz multipliers in the category of Muckenhoupt weights. |
| Země: | Kérwá |
| Instituce: | Universidad de Costa Rica |
| Repositorio: | Kérwá |
| Jazyk: | Inglés |
| OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/85361 |
| On-line přístup: | https://link.springer.com/article/10.1007/s00041-017-9590-2 https://hdl.handle.net/10669/85361 |
| Klíčové slovo: | Bochner-Riesz Multipliers Sparse bounds Weighted inequalities |