Backbone Flexibility Controls the Activity and Specificity of a Protein−Protein Interface: Specificity in Snake Venom Metalloproteases

 

Guardado en:
Detalles Bibliográficos
Autores: Wallnoefer, Hannes G., Lingott, Torsten, Gutiérrez, José María, Merfort, Irmgard, Liedl, Klaus R.
Formato: artículo original
Fecha de Publicación:2010
Descripción:Protein-protein interfaces have crucial functions in many biological processes. The large interaction areas of such interfaces show complex interaction motifs. Even more challenging is the understanding of (multi)specificity in protein-protein binding. Many proteins can bind several partners to mediate their function. A perfect paradigm to study such multispecific protein-protein interfaces are snake venom metalloproteases (SVMPs). Inherently, they bind to a variety of basement membrane proteins of capillaries, hydrolyze them, and induce profuse bleeding. However, despite having a high sequence homology, some SVMPs show a strong hemorrhagic activity, while others are (almost) inactive. We present computer simulations indicating that the activity to induce hemorrhage, and thus the capability to bind the potential reaction partners, is related to the backbone flexibility in a certain surface region. A subtle interplay between flexibility and rigidity of two loops seems to be the prerequisite for the proteins to carry out their damaging function. Presumably, a significant alteration in the backbone dynamics makes the difference between SVMPs that induce hemorrhage and the inactive ones.
País:Kérwá
Institución:Universidad de Costa Rica
Repositorio:Kérwá
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/29325
Acceso en línea:http://pubs.acs.org/doi/abs/10.1021/ja909908y
https://hdl.handle.net/10669/29325
Palabra clave:Amino acid sequence
Animals
Crystallography, X-Ray
Metalloproteases
Molecular dynamics simulation
Molecular sequence data
Protein binding
Protein conformation
Sequence alignment
Snake
Snake venom