Minimum depth of double cross product extensions

 

Zapisane w:
Opis bibliograficzny
Autor: Hernández Alvarado, Alberto José
Format: artículo preliminar
Data wydania:2020
Opis:In this paper we explore minimum odd and minimum even depth sub- algebra pairs in the context of double cross products of finite dimensional Hopf algebras. We start by defining factorization algebras and outline how subring depth in this context relates with the module depth of the regular left module representation of the given subalgebra. Next we study minimum odd depth for double cross product Hopf subalgebras and determine their value in terms of their related module depth, we conclude that minimum odd depth of Drinfel’d double Hopf subalgebras is 3. Finaly we produce a necessary and sufficient condition for depth 2 in double cross product Hopf subalgebra extensions. This sufficient condition is then used to prove results regarding minimum depth 2 in Drinfel’d double Hopf subalgebras, particu- larly in the case of finite Group Hopf algebras. Lastly we provide formulas for the centralizer of a normal Hopf subalgebra in a double cross product scenario.
Kraj:Kérwá
Instytucja:Universidad de Costa Rica
Repositorio:Kérwá
Język:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85068
Dostęp online:https://arxiv.org/abs/2005.00860
https://hdl.handle.net/10669/85068
Słowo kluczowe:Subring depth
Hopf subalgebras
Double cross product Hopf algebras
Drinfel'd double