Hopf algebras in noncommutative geometry

 

Đã lưu trong:
Chi tiết về thư mục
Tác giả: Várilly Boyle, Joseph C.
Định dạng: capítulo de libro
Ngày xuất bản:2003
Miêu tả:We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.
Quốc gia:Kérwá
Tổ chức giáo dục:Universidad de Costa Rica
Repositorio:Kérwá
Ngôn ngữ:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/88493
Truy cập trực tuyến:https://www.worldscientific.com/doi/10.1142/9789812705068_0001
https://hdl.handle.net/10669/88493
Từ khóa:GEOMETRY
ALGEBRA