Minimum depth of factorization algebra extensions

 

Enregistré dans:
Détails bibliographiques
Auteur: Hernández Alvarado, Alberto José
Format: artículo original
Date de publication:2023
Description:In this paper we study the minimum depth of a subalgebra embedded in a factorization algebra, and outline how subring depth, in this context, is related to module depth of the regular left module representation of the given subalgebra, within the appropriate module ring. As a consequence, we produce specific results for subring depth of a Hopf subalgebra in its Drinfel'd double. Moreover we study a necessary and sufficient condition for normality of a Hopf algebra within a double cross product context, which is equivalent to depth 2, as it is well known by a result of Kadison. Using the sufficient condition, we then prove some results regarding minimum depth 2 for Drinfel'd double Hopf subalgebra pairs, particularly in the case of finite group algebras. Finally, we provide formulas for the centralizer of a normal Hopf subalgebra in a double cross product scenario.
Pays:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
Langue:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/90804
Accès en ligne:https://revistas.unal.edu.co/index.php/recolma/article/view/112374
https://hdl.handle.net/10669/90804
Mots-clés:GEOMETRY
MATHEMATICS
ALGEBRA