Sparse bounds for the discrete spherical maximal functions

 

Enregistré dans:
Détails bibliographiques
Auteurs: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
Format: artículo original
Date de publication:2020
Description:We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arc components. The efficiency arises as one only needs a single estimate on each element of the decomposition.
Pays:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
Langue:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85154
Accès en ligne:https://msp.org/paa/2020/2-1/p04.xhtml
https://hdl.handle.net/10669/85154
Mots-clés:Sparse
Discrete
Spherical average