Sparse bounds for the discrete spherical maximal functions

 

保存先:
書誌詳細
著者: Kesler, Robert, Lacey, Michael T., Mena Arias, Darío Alberto
フォーマット: artículo original
出版日付:2020
その他の書誌記述:We prove sparse bounds for the spherical maximal operator of Magyar, Stein and Wainger. The bounds are conjecturally sharp, and contain an endpoint estimate. The new method of proof is inspired by ones by Bourgain and Ionescu, is very efficient, and has not been used in the proof of sparse bounds before. The Hardy-Littlewood Circle method is used to decompose the multiplier into major and minor arc components. The efficiency arises as one only needs a single estimate on each element of the decomposition.
国:Kérwá
機関:Universidad de Costa Rica
Repositorio:Kérwá
言語:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85154
オンライン・アクセス:https://msp.org/paa/2020/2-1/p04.xhtml
https://hdl.handle.net/10669/85154
キーワード:Sparse
Discrete
Spherical average