Reducing the two dimensional Green functions: Fourier mode decomposition

 

Enregistré dans:
Détails bibliographiques
Auteurs: Mallarino-Robayo, Juan Pablo, Ferrero-Botero, Alejandro
Format: artículo original
Statut:Versión publicada
Date de publication:2020
Description:Often we encounter high dimensional differential equations. A clever representation of a generalized solution could be procured in certain cases using Green functions. We show how this representation could be achieved and via a clever Fourier mode decomposition for the particular disc case resulting in a highly correlated set of functions that transforming into a discrete representation – via a classical second order finite difference approximation – can be ultimately represented as a linear equation for matrices embedding all boundary conditions in the structure of such objects. The resulting problem could be solved using stochastic gradient descent with an additional on-the-fly optimization reducing required computation resources substantially.
Pays:Portal de Revistas TEC
Institution:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Langue:Inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/5078
Accès en ligne:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/5078
Mots-clés:Green functions
Fourier mode decomposition
discrete representation
stochastic gradient descent
Funciones de Green
descomposición en modos de Fourier
representación discreta
Gradient Descent estocástico