Experiences in the Application of a Multivariate Method for Imputation of Meteorological Data

 

Gespeichert in:
Bibliographische Detailangaben
Verfasser: Araya-López, José Luis
Format: artículo original
Status:Versión publicada
Publikationsdatum:2014
Beschreibung:Different statistical methods and techniques have been proposed for dealing with missing data. This study discusses the application of the principal components approach for filling hourly meteorological data. In order to test the possibilities that this approach offers, preliminary tests were conducted by random removal of real data in time series. Missing data were predicted using a principal-components algorithm. The results show that this method could predict the missing information with an mean absolute error that is around 1ºC in most of the cases. 
Land:Portal de Revistas TEC
Institution:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Sprache:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/2068
Online Zugang:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/2068
Stichwort:Imputación
datos faltantes
componentes principales
meteorología
climatología.
Imputation
missing data
principal components
meteorology
climatology