Experiences in the Application of a Multivariate Method for Imputation of Meteorological Data

 

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف: Araya-López, José Luis
التنسيق: artículo original
الحالة:Versión publicada
تاريخ النشر:2014
الوصف:Different statistical methods and techniques have been proposed for dealing with missing data. This study discusses the application of the principal components approach for filling hourly meteorological data. In order to test the possibilities that this approach offers, preliminary tests were conducted by random removal of real data in time series. Missing data were predicted using a principal-components algorithm. The results show that this method could predict the missing information with an mean absolute error that is around 1ºC in most of the cases. 
البلد:Portal de Revistas TEC
المؤسسة:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
اللغة:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/2068
الوصول للمادة أونلاين:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/2068
كلمة مفتاحية:Imputación
datos faltantes
componentes principales
meteorología
climatología.
Imputation
missing data
principal components
meteorology
climatology