Experiences in the Application of a Multivariate Method for Imputation of Meteorological Data

 

Gorde:
Xehetasun bibliografikoak
Egilea: Araya-López, José Luis
Formatua: artículo original
Egoera:Versión publicada
Argitaratze data:2014
Deskribapena:Different statistical methods and techniques have been proposed for dealing with missing data. This study discusses the application of the principal components approach for filling hourly meteorological data. In order to test the possibilities that this approach offers, preliminary tests were conducted by random removal of real data in time series. Missing data were predicted using a principal-components algorithm. The results show that this method could predict the missing information with an mean absolute error that is around 1ºC in most of the cases. 
Herria:Portal de Revistas TEC
Erakundea:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Hizkuntza:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/2068
Sarrera elektronikoa:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/2068
Gako-hitza:Imputación
datos faltantes
componentes principales
meteorología
climatología.
Imputation
missing data
principal components
meteorology
climatology