Deep Learning application to model learning in cognitive robotics

 

Spremljeno u:
Bibliografski detalji
Autori: Rodríguez-Jiménez, Ariel, Arias-Méndez, Esteban, Bellas-Bouza, Francisco, Becerra-Permuy, Jose
Format: artículo original
Status:Versión publicada
Datum izdanja:2020
Opis:The kind of training used for an artificial neural network will depend on factors such as: available data, training time, hardware resources, etc. The trainings can be online and offline. In the current article we experimented with online trainings on a robot whose main characteristic is the usage of a Cognitive Darwinist Mechanism to survive. The robot learns in real-time. It has deep artificial neural networks to predict actions, it’s trained using the least amount of storage and the training time has to be as fast as possible; keeping high confidence in the artificial neural network. The experimental trainings are: Online Deep Learning, Online Deep Learning with memory and Online Mini-Batch Deep Learning with memory.
Zemlja:Portal de Revistas TEC
Institucija:Instituto Tecnológico de Costa Rica
Repositorio:Portal de Revistas TEC
Jezik:Español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/5171
Online pristup:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/5171
Ključna riječ:Artificial neural network
batch training
mini-batch training
deep learning
cognitive robotics
machine learning
stochastic optimizer
Baxter robot
Red neuronal artificial
entrenamiento con batch
entrenamiento con mini-batch
aprendizaje profundo
robótica cognitiva
aprendizaje automático
optimizadores estocásticos
robot Baxter