Deep Learning application to model learning in cognitive robotics
Salvato in:
| Autori: | , , , |
|---|---|
| Natura: | artículo original |
| Status: | Versión publicada |
| Data di pubblicazione: | 2020 |
| Descrizione: | The kind of training used for an artificial neural network will depend on factors such as: available data, training time, hardware resources, etc. The trainings can be online and offline. In the current article we experimented with online trainings on a robot whose main characteristic is the usage of a Cognitive Darwinist Mechanism to survive. The robot learns in real-time. It has deep artificial neural networks to predict actions, it’s trained using the least amount of storage and the training time has to be as fast as possible; keeping high confidence in the artificial neural network. The experimental trainings are: Online Deep Learning, Online Deep Learning with memory and Online Mini-Batch Deep Learning with memory. |
| Stato: | Portal de Revistas TEC |
| Istituzione: | Instituto Tecnológico de Costa Rica |
| Repositorio: | Portal de Revistas TEC |
| Lingua: | Español |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/5171 |
| Accesso online: | https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/5171 |
| Keyword: | Artificial neural network batch training mini-batch training deep learning cognitive robotics machine learning stochastic optimizer Baxter robot Red neuronal artificial entrenamiento con batch entrenamiento con mini-batch aprendizaje profundo robótica cognitiva aprendizaje automático optimizadores estocásticos robot Baxter |