Graph dominance by rook domains for Znp and Zn3 × Zm2 graphs
Gespeichert in:
| Verfasser: | |
|---|---|
| Format: | artículo original |
| Status: | Versión publicada |
| Publikationsdatum: | 2004 |
| Beschreibung: | Described within is the problem of finding near-minimum dominating subsets of a given graph by rook domains. Specifically, we study the graphs of the kind Znp and Zn3×Zm2 and introduce a simulated annealing algorithm to compute upper bounds of the size of minimum dominating subsets. We demonstrate the effectiveness of the algorithm by comparing the results with a previously studied class of graphs, including the so-called “football pool” graphs and others. We give some new upper bounds for graphs of the kind Znp, with p ≥ 4. The codes of some dominating subsets are given in an appendix. |
| Land: | Portal de Revistas UCR |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Sprache: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/243 |
| Online Zugang: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/243 |
| Stichwort: | Graph domination simulated annealing football pool problem combinatorics Dominación de grafos recocido simulado problema de las apuestas en fútbol combinatoria |