Dynamics of a two-dimensional discrete-time SIS model

 

Guardado en:
Detalles Bibliográficos
Autores: Barrera, Jaime H., Cintrón Arias, Ariel, Davidenko, Nicolas, Denogean, Lisa R., Franco González, Saúl Ramón
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2000
Descripción:We analyze a two-dimensional discrete-time SIS model with a non-constant total population. Our goal is to determine the interaction between the total population, the susceptible class and the infective class, and the implications this may have for the disease dynamics. Utilizing a constant recruitment rate in the susceptible class, it is possible to assume the existence of an asymptotic limiting equation, which enables us to reduce the system of, two-equations into a single, dynamically equivalent equation. In this case, we are able to demonstrate the global stability of the disease-free and the endemic equilibria when the basic reproductive number (R0) is less than one and greater than one, respectively. When we consider a non-constant recruitment rate, the total population bifurcates as we vary the birth rate and the death rate. Using computer simulations, we observe different behavior among the infective class and the total population, and possibly, the occurrence of a strange attractor.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/190
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/190
Palabra clave:Susceptible-Infective-Susceptible (SIS)
difference equations
bifurcation
basic reproductive number (R0)
asymptotic limiting equation
Susceptible-Infeccioso-Susceptible (SIS)
ecuaciones en diferencias
bifurcación
número básico reproductivo (R0)
ecuación limitante asintótica