Dynamics of a two-dimensional discrete-time SIS model

 

Uloženo v:
Podrobná bibliografie
Autoři: Barrera, Jaime H., Cintrón Arias, Ariel, Davidenko, Nicolas, Denogean, Lisa R., Franco González, Saúl Ramón
Médium: artículo original
Stav:Versión publicada
Datum vydání:2000
Popis:We analyze a two-dimensional discrete-time SIS model with a non-constant total population. Our goal is to determine the interaction between the total population, the susceptible class and the infective class, and the implications this may have for the disease dynamics. Utilizing a constant recruitment rate in the susceptible class, it is possible to assume the existence of an asymptotic limiting equation, which enables us to reduce the system of, two-equations into a single, dynamically equivalent equation. In this case, we are able to demonstrate the global stability of the disease-free and the endemic equilibria when the basic reproductive number (R0) is less than one and greater than one, respectively. When we consider a non-constant recruitment rate, the total population bifurcates as we vary the birth rate and the death rate. Using computer simulations, we observe different behavior among the infective class and the total population, and possibly, the occurrence of a strange attractor.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/190
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/190
Klíčové slovo:Susceptible-Infective-Susceptible (SIS)
difference equations
bifurcation
basic reproductive number (R0)
asymptotic limiting equation
Susceptible-Infeccioso-Susceptible (SIS)
ecuaciones en diferencias
bifurcación
número básico reproductivo (R0)
ecuación limitante asintótica