The regression logistics model in case the response variable assumes one of three levels: estimations, proof of hypothesis and model selection
Guardado en:
Autores: | , , |
---|---|
Formato: | artículo original |
Estado: | Versión publicada |
Fecha de Publicación: | 2017 |
Descripción: | This approach follows the following scheme: first, the vector score and the information matrix from the logistics models and saturated multinomials with three possible response levels starting from the first and second derivative of the function of likelihood with respect to the parameters of the models; the relationship between the vector score and the information matrix; the multivariant standardization of the entry variables of each model; the respective asymptotic distributions; proof of comparisons and model selections that include the polytomic variable with three levels, logistic logistical and saturated models, logistical and submodel, logistical with null model, and logistical with the submodel of a less explanatory variable. |
País: | Portal de Revistas UCR |
Institución: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Lenguaje: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/22442 |
Acceso en línea: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/22442 |
Palabra clave: | logistic model logit multinomial vector score Fisher ́s information matrix asymptotic distributions hypothesis testing modelo logístico matriz de información de Fisher distribuciones asintóticas pruebas de hipótesis |