The regression logistics model in case the response variable assumes one of three levels: estimations, proof of hypothesis and model selection

 

Bewaard in:
Bibliografische gegevens
Auteurs: Llinás Solano, Humberto, Arteta Charris, Martha, Tilano Hernández, Jorge
Formaat: artículo original
Status:Versión publicada
Publicatiedatum:2017
Omschrijving:This approach follows the following scheme: first, the vector score and the information matrix from the logistics models and saturated multinomials with three possible response levels starting from the first and second derivative of the function of likelihood with respect to the parameters of the models; the relationship between the vector score and the information matrix; the multivariant standardization of the entry variables of each model; the respective asymptotic distributions; proof of comparisons and model selections that include the polytomic variable with three levels, logistic logistical and saturated models, logistical and submodel, logistical with null model, and logistical with the submodel of a less explanatory variable.
Land:Portal de Revistas UCR
Instelling:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Taal:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/22442
Online toegang:https://revistas.ucr.ac.cr/index.php/matematica/article/view/22442
Keyword:logistic model
logit multinomial
vector score
Fisher ́s information matrix
asymptotic distributions
hypothesis testing
modelo logístico
matriz de información de Fisher
distribuciones asintóticas
pruebas de hipótesis