Local convergence of exact and inexact newton’s methods for subanalytic variational inclusions

 

Guardado en:
Detalles Bibliográficos
Autores: Cabuzel, Catherine, Pietrus, Alain, Burnet, Steeve
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2015
Descripción:This paper deals with the study of an iterative method for solving a variational inclusion of the form 0 ∈ f (x)+F(x) where f is a locally Lipschitz subanalytic function and F is a set-valued map from Rn to the closed subsets of Rn. To this inclusion, we firstly associate a Newton then secondly an Inexact Newton type sequence and with some semistability and hemistability properties of the solution x∗ of the previous inclusion, we prove the existence of a sequence which is locally superlinearly convergent.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/17519
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/17519
Palabra clave:set–valued mapping
variational inclusion
semistability
hemistability
subanalytic function
Newton’s method
inexact Newton’s method
hemi- stability