Local convergence of exact and inexact newton’s methods for subanalytic variational inclusions
Guardado en:
Autores: | , , |
---|---|
Formato: | artículo original |
Estado: | Versión publicada |
Fecha de Publicación: | 2015 |
Descripción: | This paper deals with the study of an iterative method for solving a variational inclusion of the form 0 ∈ f (x)+F(x) where f is a locally Lipschitz subanalytic function and F is a set-valued map from Rn to the closed subsets of Rn. To this inclusion, we firstly associate a Newton then secondly an Inexact Newton type sequence and with some semistability and hemistability properties of the solution x∗ of the previous inclusion, we prove the existence of a sequence which is locally superlinearly convergent. |
País: | Portal de Revistas UCR |
Institución: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Lenguaje: | Inglés |
OAI Identifier: | oai:portal.ucr.ac.cr:article/17519 |
Acceso en línea: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/17519 |
Palabra clave: | set–valued mapping variational inclusion semistability hemistability subanalytic function Newton’s method inexact Newton’s method hemi- stability |