Local convergence of exact and inexact newton’s methods for subanalytic variational inclusions
Enregistré dans:
| Auteurs: | , , |
|---|---|
| Format: | artículo original |
| Statut: | Versión publicada |
| Date de publication: | 2015 |
| Description: | This paper deals with the study of an iterative method for solving a variational inclusion of the form 0 ∈ f (x)+F(x) where f is a locally Lipschitz subanalytic function and F is a set-valued map from Rn to the closed subsets of Rn. To this inclusion, we firstly associate a Newton then secondly an Inexact Newton type sequence and with some semistability and hemistability properties of the solution x∗ of the previous inclusion, we prove the existence of a sequence which is locally superlinearly convergent. |
| Pays: | Portal de Revistas UCR |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Langue: | Inglés |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/17519 |
| Accès en ligne: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/17519 |
| Mots-clés: | set–valued mapping variational inclusion semistability hemistability subanalytic function Newton’s method inexact Newton’s method hemi- stability |