Local convergence of exact and inexact newton’s methods for subanalytic variational inclusions
Uloženo v:
| Autoři: | , , |
|---|---|
| Médium: | artículo original |
| Stav: | Versión publicada |
| Datum vydání: | 2015 |
| Popis: | This paper deals with the study of an iterative method for solving a variational inclusion of the form 0 ∈ f (x)+F(x) where f is a locally Lipschitz subanalytic function and F is a set-valued map from Rn to the closed subsets of Rn. To this inclusion, we firstly associate a Newton then secondly an Inexact Newton type sequence and with some semistability and hemistability properties of the solution x∗ of the previous inclusion, we prove the existence of a sequence which is locally superlinearly convergent. |
| Země: | Portal de Revistas UCR |
| Instituce: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Jazyk: | Inglés |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/17519 |
| On-line přístup: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/17519 |
| Klíčové slovo: | set–valued mapping variational inclusion semistability hemistability subanalytic function Newton’s method inexact Newton’s method hemi- stability |