Estimation of general equilibium model in dynamic economies using Markov Chain Monte Carlo methods

 

Guardado en:
Detalles Bibliográficos
Autores: Estévez, Gloria, Infante, Saba, Sáez, Francisco
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2012
Descripción:This paper describes a general procedure to do Bayesian inference based on the likelihood evaluation of the stochastic general equilibrium models (MEGE) through Markov Chain Monte Carlo methods (MCMC). The proposed methodology involves log linearizing the model, transformed into state space form, then use the Kalman filter to evaluate the likelihood function and finally apply the Metropolis Hastings algorithm to estimate the posterior distribution parameters. Technique is illustrated using the stochastic growth of basic model, considering quarterly data on the Venezuelan economy between the first quarter of (1984) through the third quarter of (2004). The empirical analysis made allows us to conclude that the algorithms used to estimate the model parameters work efficiently and low computational cost, the estimates obtained are consistent, that is, estimates of the predictions adequately reflect the behavior of the product, employment, consumption and investment per capita in the country. The graphs of the estimated histograms show bimodal and skewed distributions.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/2102
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/2102
Palabra clave:General equilibrium models
Bayesian inference
recursive algorithms
modelos de equilibrio general
inferencia bayesiana
algoritmos recursivos