Clasificación automática simbólica por medio de algoritmos genéticos

 

Guardado en:
Detalles Bibliográficos
Autores: Fernández-Jiménez, Fabio, Murillo-Fernández, Alex
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2009
Descripción:This paper presents a variant in the methods for clustering: a genetic algorithm for clustering through the tools of symbolic data analysis. Their implementation avoids the troubles of clustering classical methods: local minima and dependence of data types: numerical vectors (continuous data type). The proposed method was programmed in MatLab©R and it uses an interesting operator of encoding. We compare the clusters by their intra-clusters inertia. We used the following measures for symbolic data types: Ichino-Yaguchi dissimilarity measure, Gowda-Diday dissimilarity measure, Euclidean distance and Hausdorff distance.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/307
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/307
Palabra clave:Clustering
symbolic analysis
k-means
genetic algorithm
optimization
Clasificación automática
análisis simbólico
algoritmos genéticos
optimización