Clasificación automática simbólica por medio de algoritmos genéticos
        Guardado en:
      
    
                  | Autores: | , | 
|---|---|
| 格式: | artículo original | 
| 狀態: | Versión publicada | 
| Fecha de Publicación: | 2009 | 
| 實物特徵: | This paper presents a variant in the methods for clustering: a genetic algorithm for clustering through the tools of symbolic data analysis. Their implementation avoids the troubles of clustering classical methods: local minima and dependence of data types: numerical vectors (continuous data type). The proposed method was programmed in MatLab©R and it uses an interesting operator of encoding. We compare the clusters by their intra-clusters inertia. We used the following measures for symbolic data types: Ichino-Yaguchi dissimilarity measure, Gowda-Diday dissimilarity measure, Euclidean distance and Hausdorff distance. | 
| País: | Portal de Revistas UCR | 
| 機構: | Universidad de Costa Rica | 
| Repositorio: | Portal de Revistas UCR | 
| 語言: | Español | 
| OAI Identifier: | oai:portal.ucr.ac.cr:article/307 | 
| 在線閱讀: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/307 | 
| Palabra clave: | Clustering symbolic analysis k-means genetic algorithm optimization Clasificación automática análisis simbólico algoritmos genéticos optimización | 
 
    