Clasificación automática simbólica por medio de algoritmos genéticos
Uloženo v:
Autoři: | , |
---|---|
Médium: | artículo original |
Stav: | Versión publicada |
Datum vydání: | 2009 |
Popis: | This paper presents a variant in the methods for clustering: a genetic algorithm for clustering through the tools of symbolic data analysis. Their implementation avoids the troubles of clustering classical methods: local minima and dependence of data types: numerical vectors (continuous data type). The proposed method was programmed in MatLab©R and it uses an interesting operator of encoding. We compare the clusters by their intra-clusters inertia. We used the following measures for symbolic data types: Ichino-Yaguchi dissimilarity measure, Gowda-Diday dissimilarity measure, Euclidean distance and Hausdorff distance. |
Země: | Portal de Revistas UCR |
Instituce: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Jazyk: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/307 |
On-line přístup: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/307 |
Klíčové slovo: | Clustering symbolic analysis k-means genetic algorithm optimization Clasificación automática análisis simbólico algoritmos genéticos optimización |