Traveling wave type solution in a model diffusive predator - prey type Holling II

 

Guardado en:
Detalles Bibliográficos
Autores: Cortés-García, Christian, Ramírez-Fierro, Alllison
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2021
Descripción:This paper demonstrates the existence of traveling waves as solutions for a predator - prey model with a Holling II predation function and a onedimensional diffusive term for predators. When performing a qualitative analysis on the model without diffusion, it follows that the model with diffusion presents periodic solutions. Similarly, by assuming a traveling wave-type solution to the diffusion model, it is shown that it has a heteroclinical orbit that connects two equilibrium points, attracted to one of them, and therefore presents wave fronts.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/38645
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/38645
Palabra clave:Gause model
limit cycle
Hartman Grobman theorem
LaSalle principle
Hopf bifurcation theorem
modelo de Gause
ciclo límite
teorema de Hartman Grobman
principio de LaSalle
teorema de la bifurcación de Hopf