Traveling wave type solution in a model diffusive predator - prey type Holling II
Saved in:
Authors: | , |
---|---|
Format: | artículo original |
Status: | Versión publicada |
Publication Date: | 2021 |
Description: | This paper demonstrates the existence of traveling waves as solutions for a predator - prey model with a Holling II predation function and a onedimensional diffusive term for predators. When performing a qualitative analysis on the model without diffusion, it follows that the model with diffusion presents periodic solutions. Similarly, by assuming a traveling wave-type solution to the diffusion model, it is shown that it has a heteroclinical orbit that connects two equilibrium points, attracted to one of them, and therefore presents wave fronts. |
Country: | Portal de Revistas UCR |
Institution: | Universidad de Costa Rica |
Repositorio: | Portal de Revistas UCR |
Language: | Español |
OAI Identifier: | oai:portal.ucr.ac.cr:article/38645 |
Online Access: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/38645 |
Keyword: | Gause model limit cycle Hartman Grobman theorem LaSalle principle Hopf bifurcation theorem modelo de Gause ciclo límite teorema de Hartman Grobman principio de LaSalle teorema de la bifurcación de Hopf |