Traveling wave type solution in a model diffusive predator - prey type Holling II

 

Uloženo v:
Podrobná bibliografie
Autoři: Cortés-García, Christian, Ramírez-Fierro, Alllison
Médium: artículo original
Stav:Versión publicada
Datum vydání:2021
Popis:This paper demonstrates the existence of traveling waves as solutions for a predator - prey model with a Holling II predation function and a onedimensional diffusive term for predators. When performing a qualitative analysis on the model without diffusion, it follows that the model with diffusion presents periodic solutions. Similarly, by assuming a traveling wave-type solution to the diffusion model, it is shown that it has a heteroclinical orbit that connects two equilibrium points, attracted to one of them, and therefore presents wave fronts.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/38645
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/38645
Klíčové slovo:Gause model
limit cycle
Hartman Grobman theorem
LaSalle principle
Hopf bifurcation theorem
modelo de Gause
ciclo límite
teorema de Hartman Grobman
principio de LaSalle
teorema de la bifurcación de Hopf