Traveling wave type solution in a model diffusive predator - prey type Holling II
Tallennettuna:
| Tekijät: | , |
|---|---|
| Aineistotyyppi: | artículo original |
| Tila: | Versión publicada |
| Julkaisupäivä: | 2021 |
| Kuvaus: | This paper demonstrates the existence of traveling waves as solutions for a predator - prey model with a Holling II predation function and a onedimensional diffusive term for predators. When performing a qualitative analysis on the model without diffusion, it follows that the model with diffusion presents periodic solutions. Similarly, by assuming a traveling wave-type solution to the diffusion model, it is shown that it has a heteroclinical orbit that connects two equilibrium points, attracted to one of them, and therefore presents wave fronts. |
| Maa: | Portal de Revistas UCR |
| Organisaatio: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Kieli: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/38645 |
| Linkit: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/38645 |
| Sanahaku: | Gause model limit cycle Hartman Grobman theorem LaSalle principle Hopf bifurcation theorem modelo de Gause ciclo límite teorema de Hartman Grobman principio de LaSalle teorema de la bifurcación de Hopf |