EBE finite element methdology for large scale systems applied to digital rock physics

 

Guardado en:
Detalles Bibliográficos
Autor: Benavides, Francisco José
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2019
Descripción:The finite element method (FEM) is a numerical technique that estimates solutions of partial differential equations on arbitrary domains. It has been widely used to solve problems in physics and engineering. In general, the final step of this technique consists of a linear system of equations  in which the matrix  is sparse and its bandwidth depends on the finite element shape functions support. When the number of elements is large, even the efficient data structure sparse matrix representations can consume the entire computer memory. In this article, we describe a technique to solve these large-scale problems without explicitly representing this matrix. This computational trick is known as EBE (Element By Element). We also describe an application in which such kind of implementation is necessary, in the field of digital rock physics, to estimate the elastic coefficient of rock samples using micro-tomographic images.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/36140
Acceso en línea:https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/36140
Palabra clave:Numerical analysis
finite element
element by element
petrophysics
elasti properties
Análisis numérico
elemento finito
elemento por elemento
propiedades elásticas
petrofísica