Climate-driven statistical models as effective predictors of local dengue incidence in costa rica: a generalized additive model and random forest approach

 

Guardado en:
Detalles Bibliográficos
Autores: Vásquez, Paola, Loría, Antonio, Sánchez, Fabio, Barboza, Luis A.
Formato: artículo original
Estado:Versión publicada
Fecha de Publicación:2019
Descripción:Climate has been an important factor in shaping the distribution and incidence of dengue cases in tropical and subtropical countries. In Costa Rica, a tropical country with distinctive micro-climates, dengue has been endemic since its introduction in 1993, inflicting substantial economic, social, and public health repercussions. Using the number of dengue reported cases and climate data from 2007-2017, we fitted a prediction model applying a Generalized Additive Model (GAM) and Random Forest (RF) approach, which allowed us to retrospectively predict the relative risk of dengue in five climatological diverse municipalities around the country.
País:Portal de Revistas UCR
Institución:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Lenguaje:Inglés
OAI Identifier:oai:portal.ucr.ac.cr:article/39931
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/39931
Palabra clave:mosquito-borne diseases
dengue
climate variables
Costa Rica
generalized additive models
random forests
enfermedades de trasmisión vectorial
variables climáticas
modelos aditivos generalizados
bosques aleatorios