Climate-driven statistical models as effective predictors of local dengue incidence in costa rica: a generalized additive model and random forest approach
Guardat en:
| Autors: | , , , |
|---|---|
| Format: | artículo original |
| Estat: | Versión publicada |
| Data de publicació: | 2019 |
| Descripció: | Climate has been an important factor in shaping the distribution and incidence of dengue cases in tropical and subtropical countries. In Costa Rica, a tropical country with distinctive micro-climates, dengue has been endemic since its introduction in 1993, inflicting substantial economic, social, and public health repercussions. Using the number of dengue reported cases and climate data from 2007-2017, we fitted a prediction model applying a Generalized Additive Model (GAM) and Random Forest (RF) approach, which allowed us to retrospectively predict the relative risk of dengue in five climatological diverse municipalities around the country. |
| Pais: | Portal de Revistas UCR |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Idioma: | Inglés |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/39931 |
| Accés en línia: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/39931 |
| Paraula clau: | mosquito-borne diseases dengue climate variables Costa Rica generalized additive models random forests enfermedades de trasmisión vectorial variables climáticas modelos aditivos generalizados bosques aleatorios |