Elliptic surfaces and Hilbert’s tenth problem
محفوظ في:
| المؤلف: | |
|---|---|
| التنسيق: | artículo original |
| الحالة: | Versión publicada |
| تاريخ النشر: | 2023 |
| الوصف: | A negative solution to Hilbert’s tenth problem for the ring of integers OF of a number field F would follow if Z were Diophantine in OF. Denef and Lipshitz conjectured that the latter occurs for every number field F. In this note we show that the conjecture of Denef and Lipshitz is a consequence of a well-known conjecture on elliptic surfaces. |
| البلد: | Portal de Revistas UCR |
| المؤسسة: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| اللغة: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/52266 |
| الوصول للمادة أونلاين: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/52266 |
| كلمة مفتاحية: | Décimo problema de Hilbert Anillos de enteros Superficies elípticas Curvas elípticas Hilbert’s tenth problem Rings of integers Elliptic surfaces Elliptic curves |