Elliptic surfaces and Hilbert’s tenth problem
Enregistré dans:
| Auteur: | |
|---|---|
| Format: | artículo original |
| Statut: | Versión publicada |
| Date de publication: | 2023 |
| Description: | A negative solution to Hilbert’s tenth problem for the ring of integers OF of a number field F would follow if Z were Diophantine in OF. Denef and Lipshitz conjectured that the latter occurs for every number field F. In this note we show that the conjecture of Denef and Lipshitz is a consequence of a well-known conjecture on elliptic surfaces. |
| Pays: | Portal de Revistas UCR |
| Institution: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| Langue: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/52266 |
| Accès en ligne: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/52266 |
| Mots-clés: | Décimo problema de Hilbert Anillos de enteros Superficies elípticas Curvas elípticas Hilbert’s tenth problem Rings of integers Elliptic surfaces Elliptic curves |