Lyapunov exponents of probability distributions with non-compact support

 

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
التنسيق: artículo preliminar
تاريخ النشر:2020
الوصف:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
البلد:Kérwá
المؤسسة:Universidad de Costa Rica
Repositorio:Kérwá
اللغة:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
الوصول للمادة أونلاين:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
كلمة مفتاحية:Lyapunov exponents
Linear cocycles
Wasserstein topology