Lyapunov exponents of probability distributions with non-compact support

 

Guardat en:
Dades bibliogràfiques
Autors: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Format: artículo preliminar
Data de publicació:2020
Descripció:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Pais:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
Idioma:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Accés en línia:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Paraula clau:Lyapunov exponents
Linear cocycles
Wasserstein topology