Lyapunov exponents of probability distributions with non-compact support

 

Uloženo v:
Podrobná bibliografie
Autoři: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Médium: artículo preliminar
Datum vydání:2020
Popis:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Země:Kérwá
Instituce:Universidad de Costa Rica
Repositorio:Kérwá
Jazyk:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
On-line přístup:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Klíčové slovo:Lyapunov exponents
Linear cocycles
Wasserstein topology