Lyapunov exponents of probability distributions with non-compact support

 

Guardado en:
Bibliografiske detaljer
Autores: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Format: artículo preliminar
Fecha de Publicación:2020
Beskrivelse:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
País:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
Sprog:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Online adgang:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Palabra clave:Lyapunov exponents
Linear cocycles
Wasserstein topology