Lyapunov exponents of probability distributions with non-compact support

 

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφείς: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Μορφή: artículo preliminar
Ημερομηνία έκδοσης:2020
Περιγραφή:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Χώρα:Kérwá
Ίδρυμα:Universidad de Costa Rica
Repositorio:Kérwá
Γλώσσα:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Διαθέσιμο Online:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Λέξη-Κλειδί :Lyapunov exponents
Linear cocycles
Wasserstein topology