Lyapunov exponents of probability distributions with non-compact support

 

Gorde:
Xehetasun bibliografikoak
Egileak: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Formatua: artículo preliminar
Argitaratze data:2020
Deskribapena:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Herria:Kérwá
Erakundea:Universidad de Costa Rica
Repositorio:Kérwá
Hizkuntza:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Sarrera elektronikoa:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Gako-hitza:Lyapunov exponents
Linear cocycles
Wasserstein topology