Lyapunov exponents of probability distributions with non-compact support

 

Tallennettuna:
Bibliografiset tiedot
Tekijät: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Aineistotyyppi: artículo preliminar
Julkaisupäivä:2020
Kuvaus:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Maa:Kérwá
Organisaatio:Universidad de Costa Rica
Repositorio:Kérwá
Kieli:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Linkit:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Sanahaku:Lyapunov exponents
Linear cocycles
Wasserstein topology