Lyapunov exponents of probability distributions with non-compact support

 

Enregistré dans:
Détails bibliographiques
Auteurs: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Format: artículo preliminar
Date de publication:2020
Description:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Pays:Kérwá
Institution:Universidad de Costa Rica
Repositorio:Kérwá
Langue:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Accès en ligne:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Mots-clés:Lyapunov exponents
Linear cocycles
Wasserstein topology