Lyapunov exponents of probability distributions with non-compact support

 

Spremljeno u:
Bibliografski detalji
Autori: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Format: artículo preliminar
Datum izdanja:2020
Opis:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Zemlja:Kérwá
Institucija:Universidad de Costa Rica
Repositorio:Kérwá
Jezik:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Online pristup:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Ključna riječ:Lyapunov exponents
Linear cocycles
Wasserstein topology