Lyapunov exponents of probability distributions with non-compact support

 

Salvato in:
Dettagli Bibliografici
Autori: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Natura: artículo preliminar
Data di pubblicazione:2020
Descrizione:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Stato:Kérwá
Istituzione:Universidad de Costa Rica
Repositorio:Kérwá
Lingua:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Accesso online:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Keyword:Lyapunov exponents
Linear cocycles
Wasserstein topology