Lyapunov exponents of probability distributions with non-compact support
保存先:
著者: | , |
---|---|
フォーマット: | artículo preliminar |
出版日付: | 2020 |
その他の書誌記述: | A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology. |
国: | Kérwá |
機関: | Universidad de Costa Rica |
Repositorio: | Kérwá |
言語: | Inglés |
OAI Identifier: | oai:kerwa.ucr.ac.cr:10669/85048 |
オンライン・アクセス: | https://arxiv.org/abs/1810.03061 https://hdl.handle.net/10669/85048 |
キーワード: | Lyapunov exponents Linear cocycles Wasserstein topology |