Lyapunov exponents of probability distributions with non-compact support

 

Bewaard in:
Bibliografische gegevens
Auteurs: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Formaat: artículo preliminar
Publicatiedatum:2020
Omschrijving:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Land:Kérwá
Instelling:Universidad de Costa Rica
Repositorio:Kérwá
Taal:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Online toegang:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Keyword:Lyapunov exponents
Linear cocycles
Wasserstein topology