Lyapunov exponents of probability distributions with non-compact support

 

Сохранить в:
Библиографические подробности
Авторы: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Формат: artículo preliminar
Дата публикации:2020
Описание:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Страна:Kérwá
Институт:Universidad de Costa Rica
Repositorio:Kérwá
Язык:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Online-ссылка:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Ключевое слово:Lyapunov exponents
Linear cocycles
Wasserstein topology