Lyapunov exponents of probability distributions with non-compact support

 

Sparad:
Bibliografiska uppgifter
Författarna: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Materialtyp: artículo preliminar
Utgivningstid:2020
Beskrivning:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Land:Kérwá
Organisation:Universidad de Costa Rica
Repositorio:Kérwá
Språk:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Länkar:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Nyckelord:Lyapunov exponents
Linear cocycles
Wasserstein topology