Lyapunov exponents of probability distributions with non-compact support

 

Kaydedildi:
Detaylı Bibliyografya
Yazarlar: Sánchez Chavarría, Adriana Cristina, Viana, Marcelo
Materyal Türü: artículo preliminar
Yayın Tarihi:2020
Diğer Bilgiler:A recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
Ülke:Kérwá
Kurum:Universidad de Costa Rica
Repositorio:Kérwá
Dil:Inglés
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/85048
Online Erişim:https://arxiv.org/abs/1810.03061
https://hdl.handle.net/10669/85048
Anahtar Kelime:Lyapunov exponents
Linear cocycles
Wasserstein topology