Uniform sparse bounds for discrete quadratic phase Hilbert transforms

 

保存先:
書誌詳細
著者: Kesler, Robert, Mena Arias, Darío Alberto
フォーマット: artículo original
出版日付:2017
その他の書誌記述:Consider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported functions $$ H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}. $$ We prove that, uniformly in $\alpha \in \bT$, there is a sparse bound for the bilinear form $\inn{H^{\alpha} f}{g}$. The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse H\"older classes.
国:Kérwá
機関:Universidad de Costa Rica
Repositorio:Kérwá
OAI Identifier:oai:kerwa.ucr.ac.cr:10669/76050
オンライン・アクセス:https://link.springer.com/article/10.1007/s13324-017-0195-3
https://hdl.handle.net/10669/76050
キーワード:Discrete analysis
Quadratic phase
Sparse bounds
Hilbert transform
515.733 Espacios de Hilbert