Approximation in Trigonometric Lipschitz Spaces

 

Uloženo v:
Podrobná bibliografie
Autoři: Bernabé Loranca, María Beatriz, Martínez-Guzmán, Gerardo, Larios Gómez, Mariano, Ruíz Vanoye, Jorge
Médium: artículo original
Stav:Versión publicada
Datum vydání:2021
Popis:The approximation by generalized trigonometric polynomials for Lipschitz defined functions in certain groups depends on some properties of the group defined metric. Metrics which allow this approximation are called Lipschitz compatible. In this work we give for certain class of groups, conditions under which Lipschitz compatible metrics are boundedly equivalent, i.e., they generate the same Lipschitz space. In particular, for the multiplicative group of modulus one complex numbers the conditions are necessary and sufficient for the compatible Lipschitz metrics to be boundedly equivalent.
Země:Portal de Revistas UCR
Instituce:Universidad de Costa Rica
Repositorio:Portal de Revistas UCR
Jazyk:Español
OAI Identifier:oai:portal.ucr.ac.cr:article/45440
On-line přístup:https://revistas.ucr.ac.cr/index.php/matematica/article/view/45440
Klíčové slovo:Lipschitz spaces
invariant metrics
trigonometric polynomials
topological groups
dual space
espacios de Lipschitz
métricas invariantes
polinomios trigonométricos
grupos topológicos
espacio dual