Approximation in Trigonometric Lipschitz Spaces
محفوظ في:
| المؤلفون: | , , , |
|---|---|
| التنسيق: | artículo original |
| الحالة: | Versión publicada |
| تاريخ النشر: | 2021 |
| الوصف: | The approximation by generalized trigonometric polynomials for Lipschitz defined functions in certain groups depends on some properties of the group defined metric. Metrics which allow this approximation are called Lipschitz compatible. In this work we give for certain class of groups, conditions under which Lipschitz compatible metrics are boundedly equivalent, i.e., they generate the same Lipschitz space. In particular, for the multiplicative group of modulus one complex numbers the conditions are necessary and sufficient for the compatible Lipschitz metrics to be boundedly equivalent. |
| البلد: | Portal de Revistas UCR |
| المؤسسة: | Universidad de Costa Rica |
| Repositorio: | Portal de Revistas UCR |
| اللغة: | Español |
| OAI Identifier: | oai:portal.ucr.ac.cr:article/45440 |
| الوصول للمادة أونلاين: | https://revistas.ucr.ac.cr/index.php/matematica/article/view/45440 |
| كلمة مفتاحية: | Lipschitz spaces invariant metrics trigonometric polynomials topological groups dual space espacios de Lipschitz métricas invariantes polinomios trigonométricos grupos topológicos espacio dual |